Shannon's monotonicity problem for free and classical entropy

After D. Shlyakhtenko and H. Schultz

Brent Nelson

UCLA

October 9, 2013

Recall that for a real valued random variable X with density p, its entropy is defined as

$$
H(X)=-\int_{\mathbb{R}} p(x) \log p(x) d x
$$

Amongst random variables with $E(X)=0$ and $E\left(X^{2}\right)=1$, entropy is maximized by the standard Gaussian random variables G with variance 1.

Recall that for a real valued random variable X with density p, its entropy is defined as

$$
H(X)=-\int_{\mathbb{R}} p(x) \log p(x) d x
$$

Amongst random variables with $E(X)=0$ and $E\left(X^{2}\right)=1$, entropy is maximized by the standard Gaussian random variables G with variance 1. Given a sequence X_{1}, X_{2}, \ldots of independent, identically distributed random variables with $E\left(X_{n}\right)=0$ and $\operatorname{Var}\left(X_{n}\right)=1$ then the central limit states that their central limit sums

$$
z_{N}=\frac{x_{1}+\cdots+x_{N}}{\sqrt{N}}
$$

converge in law to G. Moreover, the entropy of this sequence is nondecreasing; a result due to Artstein, Ball, Barthe, and Naor [1].

Setup:

- Let \mathcal{H} be a vector space and denote by $\mathcal{B}(\mathcal{H})$ the bounded operators on \mathcal{H}.

Setup:

- Let \mathcal{H} be a vector space and denote by $\mathcal{B}(\mathcal{H})$ the bounded operators on \mathcal{H}.
- We fix a unital $*$-subalgebra $A \subset \mathcal{B}(\mathcal{H})$, and a linear functional $\tau: A \rightarrow \mathbb{C}$.

Setup:

- Let \mathcal{H} be a vector space and denote by $\mathcal{B}(\mathcal{H})$ the bounded operators on \mathcal{H}.
- We fix a unital $*$-subalgebra $A \subset \mathcal{B}(\mathcal{H})$, and a linear functional $\tau: A \rightarrow \mathbb{C}$.
- We require that τ is

Setup:

- Let \mathcal{H} be a vector space and denote by $\mathcal{B}(\mathcal{H})$ the bounded operators on \mathcal{H}.
- We fix a unital $*$-subalgebra $A \subset \mathcal{B}(\mathcal{H})$, and a linear functional $\tau: A \rightarrow \mathbb{C}$.
- We require that τ is
(1) positive: $\tau\left(X^{*} X\right) \geq 0$ for all $X \in A$;

Setup:

- Let \mathcal{H} be a vector space and denote by $\mathcal{B}(\mathcal{H})$ the bounded operators on \mathcal{H}.
- We fix a unital $*$-subalgebra $A \subset \mathcal{B}(\mathcal{H})$, and a linear functional $\tau: A \rightarrow \mathbb{C}$.
- We require that τ is
(1) positive: $\tau\left(X^{*} X\right) \geq 0$ for all $X \in A$;
(2) tracial: $\tau(X Y)=\tau(Y X)$ for all $X, Y \in A$; and

Setup:

- Let \mathcal{H} be a vector space and denote by $\mathcal{B}(\mathcal{H})$ the bounded operators on \mathcal{H}.
- We fix a unital $*$-subalgebra $A \subset \mathcal{B}(\mathcal{H})$, and a linear functional $\tau: A \rightarrow \mathbb{C}$.
- We require that τ is
(1) positive: $\tau\left(X^{*} X\right) \geq 0$ for all $X \in A$;
(2) tracial: $\tau(X Y)=\tau(Y X)$ for all $X, Y \in A$; and
(3) $\tau(1)=1$.

Setup:

- Let \mathcal{H} be a vector space and denote by $\mathcal{B}(\mathcal{H})$ the bounded operators on \mathcal{H}.
- We fix a unital $*$-subalgebra $A \subset \mathcal{B}(\mathcal{H})$, and a linear functional $\tau: A \rightarrow \mathbb{C}$.
- We require that τ is
(1) positive: $\tau\left(X^{*} X\right) \geq 0$ for all $X \in A$;
(2) tracial: $\tau(X Y)=\tau(Y X)$ for all $X, Y \in A$; and
(3) $\tau(1)=1$.
- Then (A, τ) is a non-commutative probability space, and any element $X \in A$ is a non-commutative random variable.

Setup:

- Let \mathcal{H} be a vector space and denote by $\mathcal{B}(\mathcal{H})$ the bounded operators on \mathcal{H}.
- We fix a unital $*$-subalgebra $A \subset \mathcal{B}(\mathcal{H})$, and a linear functional $\tau: A \rightarrow \mathbb{C}$.
- We require that τ is
(1) positive: $\tau\left(X^{*} X\right) \geq 0$ for all $X \in A$;
(2) tracial: $\tau(X Y)=\tau(Y X)$ for all $X, Y \in A$; and
(3) $\tau(1)=1$.
- Then (A, τ) is a non-commutative probability space, and any element $X \in A$ is a non-commutative random variable.
- $\tau(X)$ is the expectation, or first moment, and in general the law of X refers to its moments $\left\{\tau\left(X^{n}\right): n \in \mathbb{N}\right\}$.

Setup:

- Let \mathcal{H} be a vector space and denote by $\mathcal{B}(\mathcal{H})$ the bounded operators on \mathcal{H}.
- We fix a unital $*$-subalgebra $A \subset \mathcal{B}(\mathcal{H})$, and a linear functional $\tau: A \rightarrow \mathbb{C}$.
- We require that τ is
(1) positive: $\tau\left(X^{*} X\right) \geq 0$ for all $X \in A$;
(2) tracial: $\tau(X Y)=\tau(Y X)$ for all $X, Y \in A$; and
(3) $\tau(1)=1$.
- Then (A, τ) is a non-commutative probability space, and any element $X \in A$ is a non-commutative random variable.
- $\tau(X)$ is the expectation, or first moment, and in general the law of X refers to its moments $\left\{\tau\left(X^{n}\right): n \in \mathbb{N}\right\}$.
- Can think of the law of X as a linear functional on polynomials $\mu_{X}: \mathbb{C}[t] \rightarrow \mathbb{C}$ so that $\mu_{X}(p(t))=\tau(p(X))$.

A commutative example:

- Let $\mathcal{H}=L^{2}([0,1], m)$ with m the Lebesgue measure.

A commutative example:

- Let $\mathcal{H}=L^{2}([0,1], m)$ with m the Lebesgue measure.
- Let $A=L^{\infty}([0,1], m) \subset \mathcal{B}(\mathcal{H})$, and $\tau(f)=\int_{[0,1]} f d m$ for $f \in A$.

A commutative example:

- Let $\mathcal{H}=L^{2}([0,1], m)$ with m the Lebesgue measure.
- Let $A=L^{\infty}([0,1], m) \subset \mathcal{B}(\mathcal{H})$, and $\tau(f)=\int_{[0,1]} f d m$ for $f \in A$.
- This example is more important to the non-commutative case than it first seems.

If $X \in A$ is self-adjoint, then there exists a measure μ supported on the spectrum of X so that

$$
\tau\left(X^{n}\right)=\int_{\mathbb{R}} t^{n} d \mu_{X}(t)
$$

in which case we may refer to $d \mu$ as the law of X.

If $X \in A$ is self-adjoint, then there exists a measure μ supported on the spectrum of X so that

$$
\tau\left(X^{n}\right)=\int_{\mathbb{R}} t^{n} d \mu_{X}(t)
$$

in which case we may refer to $d \mu$ as the law of X. In fact, the spectral theorem states that given any Borel measurable function f supported on the spectrum of X, there exists an operator $f(X) \in \mathcal{B}(\mathcal{H})$ so that

$$
\tau(f(X))=\int_{\mathbb{R}} f(t) d \mu_{X}(t)
$$

Moreover, given two such functions f and $g, f(X) g(X)=(f \cdot g)(X)$.

If $X \in A$ is self-adjoint, then there exists a measure μ supported on the spectrum of X so that

$$
\tau\left(X^{n}\right)=\int_{\mathbb{R}} t^{n} d \mu_{X}(t)
$$

in which case we may refer to $d \mu$ as the law of X. In fact, the spectral theorem states that given any Borel measurable function f supported on the spectrum of X, there exists an operator $f(X) \in \mathcal{B}(\mathcal{H})$ so that

$$
\tau(f(X))=\int_{\mathbb{R}} f(t) d \mu_{X}(t)
$$

Moreover, given two such functions f and $g, f(X) g(X)=(f \cdot g)(X)$. For the remainder of the talk we assume all non-commutative random variables are self-adjoint.

Given several non-commutative random variables X_{1}, \ldots, X_{k}, their joint law can be thought of as a linear functional on non-commutative polynomials $\mu_{X_{1}, \ldots, X_{k}}: \mathbb{C}\left\langle t_{1}, \ldots, t_{k}\right\rangle \rightarrow \mathbb{C}$ such that $\mu_{X_{1}, \ldots, X_{k}}\left(p\left(t_{1}, \ldots, t_{k}\right)\right)=\tau\left(p\left(X_{1}, \ldots, X_{k}\right)\right)$.

Given several non-commutative random variables X_{1}, \ldots, X_{k}, their joint law can be thought of as a linear functional on non-commutative polynomials $\mu_{X_{1}, \ldots, X_{k}}: \mathbb{C}\left\langle t_{1}, \ldots, t_{k}\right\rangle \rightarrow \mathbb{C}$ such that $\mu_{X_{1}, \ldots, X_{k}}\left(p\left(t_{1}, \ldots, t_{k}\right)\right)=\tau\left(p\left(X_{1}, \ldots, X_{k}\right)\right)$.
There is no longer a single moment of each degree, and because of the non-commutativity we cannot identify the moment associated to $t_{1} t_{2} t_{3}$ to that of $t_{1} t_{3} t_{2}$, for example.

Given several non-commutative random variables X_{1}, \ldots, X_{k}, their joint law can be thought of as a linear functional on non-commutative polynomials $\mu_{X_{1}, \ldots, X_{k}}: \mathbb{C}\left\langle t_{1}, \ldots, t_{k}\right\rangle \rightarrow \mathbb{C}$ such that $\mu_{X_{1}, \ldots, X_{k}}\left(p\left(t_{1}, \ldots, t_{k}\right)\right)=\tau\left(p\left(X_{1}, \ldots, X_{k}\right)\right)$.
There is no longer a single moment of each degree, and because of the non-commutativity we cannot identify the moment associated to $t_{1} t_{2} t_{3}$ to that of $t_{1} t_{3} t_{2}$, for example.
Also, the law is no longer encoded by a measure.

The Fock space example:

- Let \mathcal{H} be a Hilbert space.

The Fock space example:

- Let \mathcal{H} be a Hilbert space.
- $\mathcal{H}^{\otimes k}$ represents the k-fold Hilbert space tensor product of \mathcal{H}. It is spanned by elements of the form $e_{1} \otimes \cdots \otimes e_{k}$, with $e_{1}, \ldots, e_{k} \in \mathcal{H}$ and has an inner product defined by

$$
\left\langle e_{1} \otimes \cdots \otimes e_{k}, f_{1} \otimes \cdots \otimes f_{k}\right\rangle=\left\langle e_{1}, f_{1}\right\rangle \cdots\left\langle e_{k}, f_{k}\right\rangle .
$$

The Fock space example:

- Let \mathcal{H} be a Hilbert space.
- $\mathcal{H}^{\otimes k}$ represents the k-fold Hilbert space tensor product of \mathcal{H}. It is spanned by elements of the form $e_{1} \otimes \cdots \otimes e_{k}$, with $e_{1}, \ldots, e_{k} \in \mathcal{H}$ and has an inner product defined by

$$
\left\langle e_{1} \otimes \cdots \otimes e_{k}, f_{1} \otimes \cdots \otimes f_{k}\right\rangle=\left\langle e_{1}, f_{1}\right\rangle \cdots\left\langle e_{k}, f_{k}\right\rangle .
$$

- The Fock space is defined as $\mathcal{F}(\mathcal{H})=\mathbb{C} \Omega \oplus \bigoplus_{k=1}^{\infty} \mathcal{H}^{\otimes k}$, where Ω is the vacuum vector (think "zero length tensor product"). Its inner product is the extension of the above where tensor products of different lengths are orthogonal.
- Fix a vector $e \in \mathcal{H}$ with $\|e\|=1$. The left creation operator is defined by

$$
\begin{aligned}
& I(e) \Omega=e \\
& I(e) e_{1} \otimes \cdots \otimes e_{k}=e \otimes e_{1} \otimes \cdots \otimes e_{k} .
\end{aligned}
$$

- Fix a vector $e \in \mathcal{H}$ with $\|e\|=1$. The left creation operator is defined by

$$
\begin{aligned}
& I(e) \Omega=e \\
& I(e) e_{1} \otimes \cdots \otimes e_{k}=e \otimes e_{1} \otimes \cdots \otimes e_{k} .
\end{aligned}
$$

- Its adjoint, the left annihilation operator, is defined by

$$
\begin{aligned}
& I(e)^{*} \Omega=0 \\
& I(e)^{*} e_{1} \otimes \cdots \otimes e_{k}=\left\langle e, e_{1}\right\rangle e_{2} \otimes \cdots \otimes e_{k} .
\end{aligned}
$$

- Fix a vector $e \in \mathcal{H}$ with $\|e\|=1$. The left creation operator is defined by

$$
\begin{aligned}
& I(e) \Omega=e \\
& I(e) e_{1} \otimes \cdots \otimes e_{k}=e \otimes e_{1} \otimes \cdots \otimes e_{k}
\end{aligned}
$$

- Its adjoint, the left annihilation operator, is defined by

$$
\begin{aligned}
& I(e)^{*} \Omega=0 \\
& I(e)^{*} e_{1} \otimes \cdots \otimes e_{k}=\left\langle e, e_{1}\right\rangle e_{2} \otimes \cdots \otimes e_{k} .
\end{aligned}
$$

- Define $c(e)=I(e)+I(e)^{*} \in \mathcal{B}(\mathcal{F}(\mathcal{H}))$.
- Define a linear functional $\tau: \mathcal{B}(\mathcal{F}(\mathcal{H})) \rightarrow \mathbb{C}$ by $\tau(X)=\langle\Omega, X \Omega\rangle$, then τ is a positive trace.
- Define a linear functional $\tau: \mathcal{B}(\mathcal{F}(\mathcal{H})) \rightarrow \mathbb{C}$ by $\tau(X)=\langle\Omega, X \Omega\rangle$, then τ is a positive trace.
- Consider the law of $c(e)$ with respect to τ :

$$
\tau\left(c(e)^{n}\right)=\langle\Omega, \underbrace{\left(I(e)+I^{*}(e)\right) \cdots\left(I(e)+I(e)^{*}\right)}_{n} \Omega\rangle
$$

- Define a linear functional $\tau: \mathcal{B}(\mathcal{F}(\mathcal{H})) \rightarrow \mathbb{C}$ by $\tau(X)=\langle\Omega, X \Omega\rangle$, then τ is a positive trace.
- Consider the law of $c(e)$ with respect to τ :

$$
\tau\left(c(e)^{n}\right)=\langle\Omega, \underbrace{\left(I(e)+I^{*}(e)\right) \cdots\left(I(e)+I(e)^{*}\right)}_{n} \Omega\rangle
$$

- Then

$$
\tau\left(c(e)^{n}\right)=\left\{\begin{array}{cl}
\frac{1}{k+1}\binom{2 k}{k} & \text { if } n=2 k \\
0 & \text { if } n=2 k+1
\end{array}\right.
$$

where $C_{k}=\frac{1}{k+1}\binom{2 k}{k}$ are the Catalan numbers.

- Recall the semicircle distribution is defined as

$$
d \mu=\chi_{[-2,2]}(t) \frac{1}{2 \pi} \sqrt{4-t^{2}} d t
$$

- Recall the semicircle distribution is defined as

$$
d \mu=\chi_{[-2,2]}(t) \frac{1}{2 \pi} \sqrt{4-t^{2}} d t
$$

- The moments of this distribution are precisely those of $c(e)$:

$$
\int_{[-2,2]} t^{n} \frac{1}{2 \pi} \sqrt{4-t^{2}} d t=\left\{\begin{array}{cl}
\frac{1}{k+1}\binom{2 k}{k} & \text { if } n=2 k \\
0 & \text { if } n=2 k+1
\end{array}\right.
$$

- Recall the semicircle distribution is defined as

$$
d \mu=\chi_{[-2,2]}(t) \frac{1}{2 \pi} \sqrt{4-t^{2}} d t
$$

- The moments of this distribution are precisely those of $c(e)$:

$$
\int_{[-2,2]} t^{n} \frac{1}{2 \pi} \sqrt{4-t^{2}} d t=\left\{\begin{array}{cl}
\frac{1}{k+1}\binom{2 k}{k} & \text { if } n=2 k \\
0 & \text { if } n=2 k+1
\end{array}\right.
$$

- Thus we say that $c(e)$ has the semicircle law or is semicircular.

Recall that the classical notion of independence says that two random variables X and Y are independent if their joint density is the product of their individual densities: $p_{X, Y}(s, t)=p_{X}(s) p_{Y}(t)$.

Recall that the classical notion of independence says that two random variables X and Y are independent if their joint density is the product of their individual densities: $p_{X, Y}(s, t)=p_{X}(s) p_{Y}(t)$.
Consequently, any joint moment can be expressed as a product of their individual moments:

$$
\iint_{\mathbb{R}^{2}} s^{m} t^{n} p_{X, Y}(s, t) d s d t=\int_{\mathbb{R}} s^{m} p_{X}(s) d s \int_{\mathbb{R}} t^{n} p_{Y}(t) d t
$$

Recall that the classical notion of independence says that two random variables X and Y are independent if their joint density is the product of their individual densities: $p_{X, Y}(s, t)=p_{X}(s) p_{Y}(t)$.
Consequently, any joint moment can be expressed as a product of their individual moments:

$$
\iint_{\mathbb{R}^{2}} s^{m} t^{n} p_{X, Y}(s, t) d s d t=\int_{\mathbb{R}} s^{m} p_{X}(s) d s \int_{\mathbb{R}} t^{n} p_{Y}(t) d t
$$

In particular, if $W \in \mathbf{A l g}(1, X)$ and $Z \in \mathbf{A} \lg (1, Y)$ are two random variables so that $E(W)=E(Z)=0$, then $E(W Z)=0$.

Recall that the classical notion of independence says that two random variables X and Y are independent if their joint density is the product of their individual densities: $p_{X, Y}(s, t)=p_{X}(s) p_{Y}(t)$.
Consequently, any joint moment can be expressed as a product of their individual moments:

$$
\iint_{\mathbb{R}^{2}} s^{m} t^{n} p_{X, Y}(s, t) d s d t=\int_{\mathbb{R}} s^{m} p_{X}(s) d s \int_{\mathbb{R}} t^{n} p_{Y}(t) d t
$$

In particular, if $W \in \mathbf{A} \boldsymbol{\operatorname { l g }}(1, X)$ and $Z \in \mathbf{A l g}(1, Y)$ are two random variables so that $E(W)=E(Z)=0$, then $E(W Z)=0$.
Free independence captures this idea in the non-commutative case.

Let $F_{1}, F_{2} \subset(A, \tau)$ be two families of non-commutative random variables. Then we say that these families are freely independent if

$$
\tau\left(W_{1} W_{2} \cdots W_{n}\right)=0
$$

when $W_{j} \in \mathbf{A l g}\left(1, F_{i(j)}\right)$ are such that $\tau\left(W_{j}\right)=0$ and $i(j) \neq i(j+1)$, with $j=1, \ldots, n$ and $i(j) \in\{1,2\}$.

Let $F_{1}, F_{2} \subset(A, \tau)$ be two families of non-commutative random variables. Then we say that these families are freely independent if

$$
\tau\left(W_{1} W_{2} \cdots W_{n}\right)=0
$$

when $W_{j} \in \mathbf{A l g}\left(1, F_{i(j)}\right)$ are such that $\tau\left(W_{j}\right)=0$ and $i(j) \neq i(j+1)$, with $j=1, \ldots, n$ and $i(j) \in\{1,2\}$.
In order to manage the non-commutativity, we must consider these lengthier products.

Let $F_{1}, F_{2} \subset(A, \tau)$ be two families of non-commutative random variables. Then we say that these families are freely independent if

$$
\tau\left(W_{1} W_{2} \cdots W_{n}\right)=0
$$

when $W_{j} \in \mathbf{A l g}\left(1, F_{i(j)}\right)$ are such that $\tau\left(W_{j}\right)=0$ and $i(j) \neq i(j+1)$, with $j=1, \ldots, n$ and $i(j) \in\{1,2\}$.
In order to manage the non-commutativity, we must consider these lengthier products.
We say W_{j} is centered when $\tau\left(W_{j}\right)=0$.

Let $F_{1}, F_{2} \subset(A, \tau)$ be two families of non-commutative random variables. Then we say that these families are freely independent if

$$
\tau\left(W_{1} W_{2} \cdots W_{n}\right)=0
$$

when $W_{j} \in \mathbf{A l g}\left(1, F_{i(j)}\right)$ are such that $\tau\left(W_{j}\right)=0$ and $i(j) \neq i(j+1)$, with $j=1, \ldots, n$ and $i(j) \in\{1,2\}$.
In order to manage the non-commutativity, we must consider these lengthier products.
We say W_{j} is centered when $\tau\left(W_{j}\right)=0$.
More generally, $F_{1}, \ldots, F_{k} \subset(A, \tau)$ are freely independent if the above holds but now we simply take $i(j) \in\{1, \ldots, k\}$.

We say non-commutative random variables X_{1}, \ldots, X_{k} are freely independent if the families $\left\{X_{1}\right\}, \ldots,\left\{X_{k}\right\}$ are freely independent.

We say non-commutative random variables X_{1}, \ldots, X_{k} are freely independent if the families $\left\{X_{1}\right\}, \ldots,\left\{X_{k}\right\}$ are freely independent. That is, if $p_{1}, \ldots, p_{n} \in \mathbb{C}[t]$ are polynomials, $i(1), \ldots, i(n) \in\{1, \ldots, k\}$ is a sequence with non-equal adjacent terms, and $\tau\left(p_{j}\left(X_{i(j)}\right)\right)=0$ for each j, then

$$
\tau\left(p_{1}\left(X_{i(1)}\right) p_{2}\left(X_{i(2)}\right) \cdots p_{n}\left(X_{i(n)}\right)\right)=0
$$

We say non-commutative random variables X_{1}, \ldots, X_{k} are freely independent if the families $\left\{X_{1}\right\}, \ldots,\left\{X_{k}\right\}$ are freely independent.
That is, if $p_{1}, \ldots, p_{n} \in \mathbb{C}[t]$ are polynomials, $i(1), \ldots, i(n) \in\{1, \ldots, k\}$ is a sequence with non-equal adjacent terms, and $\tau\left(p_{j}\left(X_{i(j)}\right)\right)=0$ for each j, then

$$
\tau\left(p_{1}\left(X_{i(1)}\right) p_{2}\left(X_{i(2)}\right) \cdots p_{n}\left(X_{i(n)}\right)\right)=0
$$

For $i=1, \ldots, k$, let $X_{i}=\left(X_{i}^{(1)}, \ldots, X_{i}^{(p)}\right) \in A^{p}$ be a p-tuple of non-commutative random variables. Then we say these p-tuples are freely independent if the families $\left\{X_{1}^{(1)}, \ldots, X_{1}^{(p)}\right\}, \ldots,\left\{X_{k}^{(1)}, \ldots, X_{k}^{(p)}\right\}$ are freely independent.

Suppose X_{1} and X_{2} are freely independent, then the moments of their joint law can be computed in terms of their individual moments (just as in the classical case).

Suppose X_{1} and X_{2} are freely independent, then the moments of their joint law can be computed in terms of their individual moments (just as in the classical case).
The trick is centering.

Suppose X_{1} and X_{2} are freely independent, then the moments of their joint law can be computed in terms of their individual moments (just as in the classical case).
The trick is centering.
For example, to compute $\tau\left(X_{1} X_{2}\right)$. First write $X_{j}=\dot{\circ}_{j}+\tau\left(X_{j}\right) 1$, where $\dot{X}_{j}=X_{j}-\tau\left(X_{j}\right) 1$. Then $\dot{X}_{j} \in \operatorname{Alg}\left(1, X_{j}\right)$ and is centered. Thus we have

Suppose X_{1} and X_{2} are freely independent, then the moments of their joint law can be computed in terms of their individual moments (just as in the classical case).
The trick is centering.
For example, to compute $\tau\left(X_{1} X_{2}\right)$. First write $X_{j}=\dot{\circ}_{j}+\tau\left(X_{j}\right) 1$, where $\dot{X}_{j}=X_{j}-\tau\left(X_{j}\right) 1$. Then $\stackrel{\circ}{X}_{j} \in \operatorname{Alg}\left(1, X_{j}\right)$ and is centered. Thus we have

$$
\begin{aligned}
\tau\left(X_{1} X_{2}\right) & =\tau\left(\left(\stackrel{\circ}{X}_{1}+\tau\left(X_{1}\right) 1\right)\left(\stackrel{\circ}{X}_{2}+\tau\left(X_{2}\right) 1\right)\right) \\
& =\tau\left(\stackrel{\circ}{X}_{1} \stackrel{\circ}{X}_{2}\right)+\tau\left(\dot{X}_{1}\right) \tau\left(X_{2}\right)+\tau\left(X_{1}\right) \tau\left(\dot{X}_{2}\right)+\tau\left(X_{1}\right) \tau\left(X_{2}\right) \\
& =\tau\left(X_{1}\right) \tau\left(X_{2}\right)
\end{aligned}
$$

Suppose X_{1} and X_{2} are freely independent, then the moments of their joint law can be computed in terms of their individual moments (just as in the classical case).
The trick is centering.
For example, to compute $\tau\left(X_{1} X_{2}\right)$. First write $X_{j}=\dot{X}_{j}+\tau\left(X_{j}\right) 1$, where $\dot{X}_{j}=X_{j}-\tau\left(X_{j}\right) 1$. Then $\stackrel{\circ}{X}_{j} \in \operatorname{Alg}\left(1, X_{j}\right)$ and is centered. Thus we have

$$
\begin{aligned}
\tau\left(X_{1} X_{2}\right) & =\tau\left(\left(\stackrel{\circ}{X}_{1}+\tau\left(X_{1}\right) 1\right)\left(\stackrel{\circ}{X}_{2}+\tau\left(X_{2}\right) 1\right)\right) \\
& =\tau\left(\stackrel{\circ}{X}_{1} \stackrel{\circ}{X}_{2}\right)+\tau\left(\dot{X}_{1}\right) \tau\left(X_{2}\right)+\tau\left(X_{1}\right) \tau\left(\stackrel{\circ}{X}_{2}\right)+\tau\left(X_{1}\right) \tau\left(X_{2}\right) \\
& =\tau\left(X_{1}\right) \tau\left(X_{2}\right)
\end{aligned}
$$

where the first term vanishes because of free independence and the other two vanish because the \check{X}_{j} are centered.

Other examples:

Other examples:

$$
\begin{aligned}
\tau\left(X_{1} X_{2}^{2} X_{1}\right) & =\tau\left(X_{1}^{2}\right) \tau\left(X_{2}^{2}\right) \\
\tau\left(X_{1} X_{2} X_{1} X_{2}\right) & =\tau\left(X_{1}^{2}\right) \tau\left(X_{2}\right)^{2}+\tau\left(X_{1}\right)^{2} \tau\left(X_{2}^{2}\right)-\tau\left(X_{1}\right)^{2} \tau\left(X_{2}\right)^{2}
\end{aligned}
$$

Other examples:

$$
\begin{aligned}
\tau\left(X_{1} X_{2}^{2} X_{1}\right) & =\tau\left(X_{1}^{2}\right) \tau\left(X_{2}^{2}\right) \\
\tau\left(X_{1} X_{2} X_{1} X_{2}\right) & =\tau\left(X_{1}^{2}\right) \tau\left(X_{2}\right)^{2}+\tau\left(X_{1}\right)^{2} \tau\left(X_{2}^{2}\right)-\tau\left(X_{1}\right)^{2} \tau\left(X_{2}\right)^{2}
\end{aligned}
$$

Given the above two examples, if $X_{1} X_{2}=X_{2} X_{1}$ then it would follow that

$$
\tau\left(\left(X_{1}-\tau\left(X_{1}\right) 1\right)^{2}\right) \tau\left(\left(X_{2}-\tau\left(X_{2}\right) 1\right)^{2}\right)=0
$$

i.e. the variance of X_{1} or X_{2} must vanish.

Returning to the Fock space example, let $e, f \in \mathcal{H}$ be orthogonal unit vectors.

Returning to the Fock space example, let $e, f \in \mathcal{H}$ be orthogonal unit vectors.
Then $c(e)$ and $c(f)$ are freely independent.

Returning to the Fock space example, let $e, f \in \mathcal{H}$ be orthogonal unit vectors.
Then $c(e)$ and $c(f)$ are freely independent. In fact, it is true that the families $\left\{I(e), I(e)^{*}\right\}$ and $\left\{I(f), I(f)^{*}\right\}$ are freely independent:

Returning to the Fock space example, let $e, f \in \mathcal{H}$ be orthogonal unit vectors.
Then $c(e)$ and $c(f)$ are freely independent. In fact, it is true that the families $\left\{I(e), I(e)^{*}\right\}$ and $\left\{I(f), I(f)^{*}\right\}$ are freely independent:

- Let $I_{1}=I(e)$ and $I_{2}=I(f)$.

Returning to the Fock space example, let $e, f \in \mathcal{H}$ be orthogonal unit vectors.
Then $c(e)$ and $c(f)$ are freely independent. In fact, it is true that the families $\left\{I(e), I(e)^{*}\right\}$ and $\left\{I(f), I(f)^{*}\right\}$ are freely independent:

- Let $I_{1}=I(e)$ and $I_{2}=I(f)$.
- Since $l_{i}^{*} l_{i}=1$, any monomial in l_{i}, l_{i}^{*} reduces to $I_{i}^{n} l_{i}^{* m}$, with $n+m>0$.

Returning to the Fock space example, let $e, f \in \mathcal{H}$ be orthogonal unit vectors.
Then $c(e)$ and $c(f)$ are freely independent. In fact, it is true that the families $\left\{I(e), I(e)^{*}\right\}$ and $\left\{I(f), I(f)^{*}\right\}$ are freely independent:

- Let $I_{1}=I(e)$ and $I_{2}=I(f)$.
- Since $l_{i}^{*} l_{i}=1$, any monomial in l_{i}, l_{i}^{*} reduces to $l_{i}^{n} I_{i}^{* m}$, with $n+m>0$.
- $\tau\left(I_{i}^{n} l_{i}^{* m}\right)=0$ unless $m=0=n$, hence a polynomial $p_{k} \in \mathbf{A l g}\left(1, l_{i}\right)$ has $\tau\left(p_{k}\right)=0$ iff it can be written as a sum of monomials (each having zero expectation) and no constant term.

Returning to the Fock space example, let $e, f \in \mathcal{H}$ be orthogonal unit vectors.
Then $c(e)$ and $c(f)$ are freely independent. In fact, it is true that the families $\left\{I(e), I(e)^{*}\right\}$ and $\left\{I(f), I(f)^{*}\right\}$ are freely independent:

- Let $I_{1}=I(e)$ and $I_{2}=I(f)$.
- Since $I_{i}^{*} l_{i}=1$, any monomial in I_{i}, l_{i}^{*} reduces to $I_{i}^{n} I_{i}^{* m}$, with $n+m>0$.
- $\tau\left(I_{i}^{n} l_{i}^{* m}\right)=0$ unless $m=0=n$, hence a polynomial $p_{k} \in \mathbf{A l g}\left(1, l_{i}\right)$ has $\tau\left(p_{k}\right)=0$ iff it can be written as a sum of monomials (each having zero expectation) and no constant term.
- Suffices to show $\tau\left(p_{1} \cdots p_{r}\right)=0$ for monomials $p_{k}=l_{i_{k}}^{n_{k}} l_{i_{k}}^{* m_{k}}$, with $n_{k}+m_{k}>0$ and $i_{k} \neq i_{k+1}$.

Returning to the Fock space example, let $e, f \in \mathcal{H}$ be orthogonal unit vectors.
Then $c(e)$ and $c(f)$ are freely independent. In fact, it is true that the families $\left\{I(e), I(e)^{*}\right\}$ and $\left\{I(f), I(f)^{*}\right\}$ are freely independent:

- Let $I_{1}=I(e)$ and $I_{2}=I(f)$.
- Since $I_{i}^{*} l_{i}=1$, any monomial in I_{i}, l_{i}^{*} reduces to $I_{i}^{n} I_{i}^{* m}$, with $n+m>0$.
- $\tau\left(l_{i}^{n} l_{i}^{* m}\right)=0$ unless $m=0=n$, hence a polynomial $p_{k} \in \operatorname{Alg}\left(1, l_{i}\right)$ has $\tau\left(p_{k}\right)=0$ iff it can be written as a sum of monomials (each having zero expectation) and no constant term.
- Suffices to show $\tau\left(p_{1} \cdots p_{r}\right)=0$ for monomials $p_{k}=l_{i_{k}}^{n_{k}} I_{i_{k}}^{* m_{k}}$, with $n_{k}+m_{k}>0$ and $i_{k} \neq i_{k+1}$.
- Considering $\left\langle\Omega, p_{1} \cdots p_{r} \Omega\right\rangle$, it is easy to see $m_{k} \neq 0$ for any k implies this is zero, but $m_{k}=0$ for all k implies $n_{k}>0$ for all k and hence $p_{1} \cdots p_{r} \Omega \in \mathcal{H}^{\otimes\left(n_{1}+\cdots+n_{r}\right)} \perp \mathbb{C} \Omega$.

With the notion of free independence, we can state one of the first parallels to the classical case:

Theorem 1 (Free central limit theorem, [6])

Let X_{1}, X_{2}, \ldots be a sequence of freely independent random variables in some non-commutative probability space (A, τ). Assume $\tau\left(X_{n}\right)=0$ and $\tau\left(X_{n}^{2}\right)=1$ for all n, and that $\sup _{n}\left|\tau\left(X_{n}^{p}\right)\right|<\infty$ for all p. Then the laws of the sequence

$$
Z_{N}=\frac{1}{\sqrt{N}}\left(X_{1}+\cdots+X_{N}\right)
$$

converge in moments to the semicircle law $d \mu=\frac{1}{2 \pi} \sqrt{4-t^{2}} d t$.

Using a standard construction in operator algebras (the

 Gelfand-Naimark-Segal construction), it is possible to associate a Hilbert space to (A, τ).Using a standard construction in operator algebras (the Gelfand-Naimark-Segal construction), it is possible to associate a Hilbert space to (A, τ).
For $X, Y \in A$ let

$$
\langle X, Y\rangle_{L^{2}(A, \tau)}=\langle X, Y\rangle_{2}:=\tau\left(X^{*} Y\right)
$$

This defines a sesquilinear form on the complex vector space A, which is complex linear in the second coordinate.

Using a standard construction in operator algebras (the Gelfand-Naimark-Segal construction), it is possible to associate a Hilbert space to (A, τ).
For $X, Y \in A$ let

$$
\langle X, Y\rangle_{L^{2}(A, \tau)}=\langle X, Y\rangle_{2}:=\tau\left(X^{*} Y\right)
$$

This defines a sesquilinear form on the complex vector space A, which is complex linear in the second coordinate.
That is, it is an inner product except for the possibility that $\langle X, X\rangle_{2}=0$ for some non-zero $X \in A$.

Using a standard construction in operator algebras (the Gelfand-Naimark-Segal construction), it is possible to associate a Hilbert space to (A, τ).
For $X, Y \in A$ let

$$
\langle X, Y\rangle_{L^{2}(A, \tau)}=\langle X, Y\rangle_{2}:=\tau\left(X^{*} Y\right)
$$

This defines a sesquilinear form on the complex vector space A, which is complex linear in the second coordinate.
That is, it is an inner product except for the possibility that $\langle X, X\rangle_{2}=0$ for some non-zero $X \in A$.
To correct this we consider the set $N=\left\{X \in A:\langle X, X\rangle_{2}=0\right\}$. We want to mod out by N, but in order for A / N to still be a vector space we need N to be a vector subspace.

Using a standard construction in operator algebras (the Gelfand-Naimark-Segal construction), it is possible to associate a Hilbert space to (A, τ).
For $X, Y \in A$ let

$$
\langle X, Y\rangle_{L^{2}(A, \tau)}=\langle X, Y\rangle_{2}:=\tau\left(X^{*} Y\right)
$$

This defines a sesquilinear form on the complex vector space A, which is complex linear in the second coordinate.
That is, it is an inner product except for the possibility that $\langle X, X\rangle_{2}=0$ for some non-zero $X \in A$.
To correct this we consider the set $N=\left\{X \in A:\langle X, X\rangle_{2}=0\right\}$. We want to mod out by N, but in order for A / N to still be a vector space we need N to be a vector subspace.
This follows from the fact that $N=\left\{X \in A:\langle Y, X\rangle_{2}=0 \forall Y \in A\right\}$.

Using a standard construction in operator algebras (the Gelfand-Naimark-Segal construction), it is possible to associate a Hilbert space to (A, τ).
For $X, Y \in A$ let

$$
\langle X, Y\rangle_{L^{2}(A, \tau)}=\langle X, Y\rangle_{2}:=\tau\left(X^{*} Y\right)
$$

This defines a sesquilinear form on the complex vector space A, which is complex linear in the second coordinate.
That is, it is an inner product except for the possibility that $\langle X, X\rangle_{2}=0$ for some non-zero $X \in A$.
To correct this we consider the set $N=\left\{X \in A:\langle X, X\rangle_{2}=0\right\}$. We want to mod out by N, but in order for A / N to still be a vector space we need N to be a vector subspace.
This follows from the fact that $N=\left\{X \in A:\langle Y, X\rangle_{2}=0 \forall Y \in A\right\}$. Now A / N is a vector space on which $\langle\cdot, \cdot\rangle_{2}$ is an inner product. Let $L^{2}(A, \tau)$ be the Hilbert space obtained by taking the completion of A / N with respect to the norm induced by $\langle\cdot, \cdot\rangle_{2}$.

To each $X \in A$ we have the associated vector $\hat{X} \in A / N \subset L^{2}(A, \tau)$.

To each $X \in A$ we have the associated vector $\hat{X} \in A / N \subset L^{2}(A, \tau)$. Moreover, each element of $X \in A$ defines a (bounded) operator $\pi(X)$ on $L^{2}(A, \tau)$ via the dense definition:

$$
\pi(X) \hat{Y}=\widehat{X Y}
$$

In particular, $\hat{X}=\pi(X) \hat{1}$ for all $X \in A$.

To each $X \in A$ we have the associated vector $\hat{X} \in A / N \subset L^{2}(A, \tau)$. Moreover, each element of $X \in A$ defines a (bounded) operator $\pi(X)$ on $L^{2}(A, \tau)$ via the dense definition:

$$
\pi(X) \hat{Y}=\widehat{X Y}
$$

In particular, $\hat{X}=\pi(X) \hat{1}$ for all $X \in A$.
The positivity of τ allows us to define the non-commutative L^{p} spaces:

$$
L^{p}(A, \tau)=\left\{X \in A: \tau\left(\left(X^{*} X\right)^{p}\right)<\infty\right\}, \quad\|X\|_{p}=\tau\left(\left(X^{*} X\right)^{p}\right)^{\frac{1}{p}}
$$

To each $X \in A$ we have the associated vector $\hat{X} \in A / N \subset L^{2}(A, \tau)$. Moreover, each element of $X \in A$ defines a (bounded) operator $\pi(X)$ on $L^{2}(A, \tau)$ via the dense definition:

$$
\pi(X) \hat{Y}=\widehat{X Y}
$$

In particular, $\hat{X}=\pi(X) \hat{1}$ for all $X \in A$.
The positivity of τ allows us to define the non-commutative L^{p} spaces:

$$
L^{p}(A, \tau)=\left\{X \in A: \tau\left(\left(X^{*} X\right)^{p}\right)<\infty\right\}, \quad\|X\|_{p}=\tau\left(\left(X^{*} X\right)^{p}\right)^{\frac{1}{p}}
$$

The von Neumann algebra generated by A is then what plays the role of the non-commutative L^{∞} space:

$$
W^{*}(A)=\overline{\pi(A)}^{S O T}=\overline{\pi(A)}^{W O T}=\pi(A)^{\prime \prime} \cap \mathcal{B}\left(L^{2}(A, \tau)\right)
$$

More generally, given a family $F \subset A$ we let

$$
W^{*}(F)={\overline{\pi\left(\operatorname{Alg}_{*}(1, F)\right)}}^{S O T} \subset W^{*}(A)
$$

More generally, given a family $F \subset A$ we let

$$
W^{*}(F)={\overline{\pi\left(\operatorname{Alg}_{*}(1, F)\right)}}^{S O T} \subset W^{*}(A)
$$

Let that $L^{2}\left(W^{*}(F), \tau\right)=\overline{W^{*}(F) \cdot \hat{1}^{\|\cdot\|_{2}} \subset L^{2}(A, \tau) \text {. Then we define the }}$ orthogonal projection $E_{W^{*}(F)}: L^{2}(A, \tau) \rightarrow L^{2}\left(W^{*}(F), \tau\right)$ onto this subspace.

Given non-commutative random variables $X_{1}, \ldots, X_{n} \in(A, \tau)$ we define Voiculescu's free difference quotients

$$
\partial_{X_{j}: X_{1}, \ldots, \hat{X}_{j}, \ldots, X_{n}}=\partial_{j}: \mathbf{A} \lg \left(1, X_{1}, \ldots, X_{n}\right) \rightarrow L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau)
$$

by $\partial_{j}\left(X_{k}\right)=\delta_{j=k} 1 \otimes 1$ and the Leibniz rule:

$$
\partial_{j}(W Z)=\partial_{j}(W) \cdot Z+W \cdot \partial_{j}(Z)
$$

Given non-commutative random variables $X_{1}, \ldots, X_{n} \in(A, \tau)$ we define Voiculescu's free difference quotients

$$
\partial_{X_{j}: X_{1}, \ldots, \hat{X}_{j}, \ldots, X_{n}}=\partial_{j}: \mathbf{A} \mathbf{I g}\left(1, X_{1}, \ldots, X_{n}\right) \rightarrow L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau)
$$

by $\partial_{j}\left(X_{k}\right)=\delta_{j=k} 1 \otimes 1$ and the Leibniz rule:

$$
\partial_{j}(W Z)=\partial_{j}(W) \cdot Z+W \cdot \partial_{j}(Z)
$$

For example,

$$
\begin{aligned}
\partial_{2}\left(X_{1} X_{2} X_{3}\right) & =\partial_{2}\left(X_{1}\right) \cdot\left(X_{2} X_{3}\right)+X_{1} \cdot \partial_{2}\left(X_{2} X_{3}\right) \\
& =0+X_{1} \cdot\left[\partial_{2}\left(X_{2}\right) \cdot X_{3}+X_{2} \cdot \partial_{2}\left(X_{3}\right)\right] \\
& =X_{1} \cdot(1 \otimes 1) \cdot X_{3}+0=X_{1} \otimes X_{3}
\end{aligned}
$$

If we think of ∂_{j} as a map on $L^{2}\left(W^{*}\left(X_{1}, \ldots, X_{n}\right), \tau\right) \subset L^{2}(A, \tau)$, then we can consider its adjoint $\partial_{j}^{*}: L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau) \rightarrow L^{2}(A, \tau)$.

If we think of ∂_{j} as a map on $L^{2}\left(W^{*}\left(X_{1}, \ldots, X_{n}\right), \tau\right) \subset L^{2}(A, \tau)$, then we can consider its adjoint $\partial_{j}^{*}: L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau) \rightarrow L^{2}(A, \tau)$. When $1 \otimes 1$ is in the domain of the ∂_{j}^{*}, we can define the conjugate variables:

$$
\xi_{j}=J\left(X_{j}: X_{1}, \ldots, \hat{X}_{j}, \ldots, X_{n}\right)=\partial_{j}^{*}(1 \otimes 1)
$$

If we think of ∂_{j} as a map on $L^{2}\left(W^{*}\left(X_{1}, \ldots, X_{n}\right), \tau\right) \subset L^{2}(A, \tau)$, then we can consider its adjoint $\partial_{j}^{*}: L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau) \rightarrow L^{2}(A, \tau)$.
When $1 \otimes 1$ is in the domain of the ∂_{j}^{*}, we can define the conjugate variables:

$$
\xi_{j}=J\left(X_{j}: X_{1}, \ldots, \hat{X}_{j}, \ldots, X_{n}\right)=\partial_{j}^{*}(1 \otimes 1)
$$

That is, if $Y \in L^{2}\left(W^{*}\left(X_{1}, \ldots, X_{n}\right), \tau\right)$ then

$$
\left\langle Y, \xi_{j}\right\rangle_{2}=\left\langle\partial_{j}(Y), 1 \otimes 1\right\rangle_{L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau)}
$$

If we think of ∂_{j} as a map on $L^{2}\left(W^{*}\left(X_{1}, \ldots, X_{n}\right), \tau\right) \subset L^{2}(A, \tau)$, then we can consider its adjoint $\partial_{j}^{*}: L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau) \rightarrow L^{2}(A, \tau)$.
When $1 \otimes 1$ is in the domain of the ∂_{j}^{*}, we can define the conjugate variables:

$$
\xi_{j}=J\left(X_{j}: X_{1}, \ldots, \hat{X}_{j}, \ldots, X_{n}\right)=\partial_{j}^{*}(1 \otimes 1)
$$

That is, if $Y \in L^{2}\left(W^{*}\left(X_{1}, \ldots, X_{n}\right), \tau\right)$ then

$$
\left\langle Y, \xi_{j}\right\rangle_{2}=\left\langle\partial_{j}(Y), 1 \otimes 1\right\rangle_{L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau)}
$$

The free Fisher information of the n-tuple $\left(X_{1}, \ldots, X_{n}\right)$ is then defined as

$$
\Phi^{*}\left(X_{1}, \ldots, X_{n}\right):=\sum_{j=1}^{n}\left\|\xi_{j}\right\|_{L^{2}(A, \tau)}^{2}
$$

The free entropy of the n-tuple $\left(X_{1}, \ldots, X_{n}\right)$ is defined as

$$
\chi^{*}\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{2} \int_{0}^{\infty}\left[\frac{n}{1+t}-\Phi^{*}\left(X_{1}^{t}, \ldots, X_{n}^{t}\right)\right] d t+\frac{n}{2} \log 2 \pi e,
$$

where $X_{j}^{t}=X_{j}+\sqrt{t} S_{j}$ and S_{1}, \ldots, S_{n} are freely independent, identically distributed, centered, semicircular variables of variance 1 , which are also freely independent from X_{1}, \ldots, X_{n}.

The free entropy of the n-tuple $\left(X_{1}, \ldots, X_{n}\right)$ is defined as

$$
\chi^{*}\left(X_{1}, \ldots, X_{n}\right)=\frac{1}{2} \int_{0}^{\infty}\left[\frac{n}{1+t}-\Phi^{*}\left(X_{1}^{t}, \ldots, X_{n}^{t}\right)\right] d t+\frac{n}{2} \log 2 \pi e
$$

where $X_{j}^{t}=X_{j}+\sqrt{t} S_{j}$ and S_{1}, \ldots, S_{n} are freely independent, identically distributed, centered, semicircular variables of variance 1 , which are also freely independent from X_{1}, \ldots, X_{n}.
When $n=1$, the above definition is equivalent to

$$
\chi(X)=\iint_{\mathbb{R}^{2}} \log |s-t| d \mu_{X}(s) d \mu_{X}(t)+\frac{3}{4}+\frac{1}{2} \log 2 \pi
$$

where μ_{X} is the law of X.

Theorem 2

Let (A, τ) be a non-commutative probability space. Let $X_{j}=\left(X_{j}^{(1)}, \ldots, X_{j}^{(p)}\right) \in A^{p}, j=1,2, \ldots$ be a sequence of p-tuples of random variables, such that X_{1}, X_{2}, \ldots are freely independent, identically distributed, and have finite second moments. Define $Z_{N}=N^{-1 / 2}\left(X_{1}+\cdots+X_{N}\right)$. Then the function $N \mapsto \chi^{*}\left(Z_{N}^{(1)}, \ldots, Z_{N}^{(p)}\right)$ is monotone nondecreasing.

Theorem 2

Let (A, τ) be a non-commutative probability space. Let $X_{j}=\left(X_{j}^{(1)}, \ldots, X_{j}^{(p)}\right) \in A^{p}, j=1,2, \ldots$ be a sequence of p-tuples of random variables, such that X_{1}, X_{2}, \ldots are freely independent, identically distributed, and have finite second moments. Define $Z_{N}=N^{-1 / 2}\left(X_{1}+\cdots+X_{N}\right)$. Then the function $N \mapsto \chi^{*}\left(Z_{N}^{(1)}, \ldots, Z_{N}^{(p)}\right)$ is monotone nondecreasing.

To show this we first show that the free Fisher information is monotone nonincreasing.

Lemma 3

Assume $Z \in(A, \tau)$ is freely independent from $X, Y_{1}, \ldots, Y_{n} \in(A, \tau)$. Then $J\left(X: Y_{1}, \ldots, Y_{n}\right)$ exists iff $J\left(X: Y_{1}, \ldots, Y_{n}, Z\right)$ exists, in which case we have

$$
J\left(X: Y_{1}, \ldots, Y_{n}\right)=J\left(X: Y_{1}, \ldots, Y_{n}, Z\right)
$$

Lemma 3

Assume $Z \in(A, \tau)$ is freely independent from $X, Y_{1}, \ldots, Y_{n} \in(A, \tau)$. Then $J\left(X: Y_{1}, \ldots, Y_{n}\right)$ exists iff $J\left(X: Y_{1}, \ldots, Y_{n}, Z\right)$ exists, in which case we have

$$
J\left(X: Y_{1}, \ldots, Y_{n}\right)=J\left(X: Y_{1}, \ldots, Y_{n}, Z\right)
$$

Proof.

Let $\partial_{0}=\partial_{X:} Y_{1}, \ldots, Y_{n}$ and $\partial_{1}=\partial_{X:} Y_{1}, \ldots, Y_{n}, Z$. Then we can think of these as maps on $B_{0}:=W^{*}\left(X, Y_{1}, \ldots, Y_{n}\right)$ and $B_{1}:=W^{*}\left(X, Y_{1}, \ldots, Y_{n}, Z\right)$.

Lemma 3

Assume $Z \in(A, \tau)$ is freely independent from $X, Y_{1}, \ldots, Y_{n} \in(A, \tau)$. Then $J\left(X: Y_{1}, \ldots, Y_{n}\right)$ exists iff $J\left(X: Y_{1}, \ldots, Y_{n}, Z\right)$ exists, in which case we have

$$
J\left(X: Y_{1}, \ldots, Y_{n}\right)=J\left(X: Y_{1}, \ldots, Y_{n}, Z\right) .
$$

Proof.

Let $\partial_{0}=\partial_{X:} Y_{1}, \ldots, Y_{n}$ and $\partial_{1}=\partial_{X:} Y_{1}, \ldots, Y_{n}, Z$. Then we can think of these as maps on $B_{0}:=W^{*}\left(X, Y_{1}, \ldots, Y_{n}\right)$ and $B_{1}:=W^{*}\left(X, Y_{1}, \ldots, Y_{n}, Z\right)$. Suppose $\xi_{1}:=J\left(X: Y_{1}, \ldots, Y_{n}, Z\right)$ exists (i.e. $1 \otimes 1$ is in the domain of $\left.\partial_{1}^{*}\right)$. If $E_{0}=E_{B_{0}}$, then by considering inner products against $\eta \in L^{2}\left(B_{0}, \tau\right)$ it is clear that

$$
\xi_{0}:=J\left(X: Y_{1}, \ldots, Y_{n}\right)=E_{0}\left(\xi_{1}\right)
$$

Proof of Lemma 3 (cont.)

Thus it suffices to show that if ξ_{0} exists, then ξ_{1} exists and $\xi_{0}=\xi_{1}$.

Proof of Lemma 3 (cont.)

Thus it suffices to show that if ξ_{0} exists, then ξ_{1} exists and $\xi_{0}=\xi_{1}$. Consider an arbitrary element of $\operatorname{Alg}\left(1, X, Y_{1}, \ldots, Y_{n}, Z\right)$:

$$
R=Q_{0} P_{1} Q_{1} \cdots P_{r} Q_{r}
$$

with $P_{k} \in \mathbf{A} \lg \left(1, X, Y_{1}, \ldots, Y_{n}\right), Q_{k} \in \mathbf{A l g}(1, Z)$.

Proof of Lemma 3 (cont.)

Thus it suffices to show that if ξ_{0} exists, then ξ_{1} exists and $\xi_{0}=\xi_{1}$. Consider an arbitrary element of $\operatorname{Alg}\left(1, X, Y_{1}, \ldots, Y_{n}, Z\right)$:

$$
R=Q_{0} P_{1} Q_{1} \cdots P_{r} Q_{r}
$$

with $P_{k} \in \mathbf{A l g}\left(1, X, Y_{1}, \ldots, Y_{n}\right), Q_{k} \in \mathbf{A l g}(1, Z)$.
We must show $\left\langle\xi_{0}, R\right\rangle_{2}=\left\langle 1 \otimes 1, \partial_{1}(R)\right\rangle_{L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau)}$. We proceed by induction on r.

Proof of Lemma 3 (cont.)

Thus it suffices to show that if ξ_{0} exists, then ξ_{1} exists and $\xi_{0}=\xi_{1}$. Consider an arbitrary element of $\operatorname{Alg}\left(1, X, Y_{1}, \ldots, Y_{n}, Z\right)$:

$$
R=Q_{0} P_{1} Q_{1} \cdots P_{r} Q_{r}
$$

with $P_{k} \in \mathbf{A} \lg \left(1, X, Y_{1}, \ldots, Y_{n}\right), Q_{k} \in \mathbf{A} \lg (1, Z)$.
We must show $\left\langle\xi_{0}, R\right\rangle_{2}=\left\langle 1 \otimes 1, \partial_{1}(R)\right\rangle_{L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau)}$. We proceed by induction on r.
For $r=0$, note that

$$
\tau\left(\xi_{0}\right)=\left\langle\xi_{0}, 1\right\rangle_{2}=\left\langle 1 \otimes 1, \partial_{0}(1)\right\rangle_{L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau)}=0
$$

and so by free independence...

Proof of Lemma 3 (cont.)

$$
\begin{aligned}
\left\langle\xi_{0}, Q_{0}\right\rangle_{2} & =\tau\left(\xi_{0} Q_{0}\right) \\
& =\tau\left(\xi_{0}\left(Q_{0}-\tau\left(Q_{0}\right)\right)\right)+\tau\left(\xi_{0}\right) \tau\left(Q_{0}\right)=0
\end{aligned}
$$

On the other hand, $\partial_{1}\left(Q_{0}\right)=0$, so the base case holds.

Proof of Lemma 3 (cont.)

$$
\begin{aligned}
\left\langle\xi_{0}, Q_{0}\right\rangle_{2} & =\tau\left(\xi_{0} Q_{0}\right) \\
& =\tau\left(\xi_{0}\left(Q_{0}-\tau\left(Q_{0}\right)\right)\right)+\tau\left(\xi_{0}\right) \tau\left(Q_{0}\right)=0
\end{aligned}
$$

On the other hand, $\partial_{1}\left(Q_{0}\right)=0$, so the base case holds. For $r>0$, we note that we can assume $P_{1}, Q_{1}, \ldots, P_{r-1}, Q_{r-1}, P_{r}$ are centered.

Proof of Lemma 3 (cont.)

$$
\begin{aligned}
\left\langle\xi_{0}, Q_{0}\right\rangle_{2} & =\tau\left(\xi_{0} Q_{0}\right) \\
& =\tau\left(\xi_{0}\left(Q_{0}-\tau\left(Q_{0}\right)\right)\right)+\tau\left(\xi_{0}\right) \tau\left(Q_{0}\right)=0
\end{aligned}
$$

On the other hand, $\partial_{1}\left(Q_{0}\right)=0$, so the base case holds. For $r>0$, we note that we can assume $P_{1}, Q_{1}, \ldots, P_{r-1}, Q_{r-1}, P_{r}$ are centered.
Indeed, by expanding each term in $P_{1} Q_{1} \cdots Q_{r-1} P_{r}$ into its centered part and scalar part, the resulting products have either all centered terms or are covered by the induction hypothesis.

Proof of Lemma 3 (cont.)

Thus, for $r=1$ we have

$$
\begin{aligned}
\tau\left(\xi_{0} Q_{0} P_{1} Q_{1}\right)= & \tau\left(\xi_{0} \stackrel{\circ}{0}_{0} P_{1} \grave{Q}_{1}\right)+\tau\left(Q_{0}\right) \tau\left(\xi_{0} P_{1} \grave{Q}_{1}\right) \\
& +\tau\left(Q_{1}\right) \tau\left(\xi_{0} \grave{Q}_{0} P_{1}\right)+\tau\left(Q_{0}\right) \tau\left(Q_{1}\right) \tau\left(\xi_{0} P_{1}\right) \\
= & \tau\left(Q_{0}\right) \tau\left(Q_{1}\right) \tau\left(\xi_{0} P_{1}\right) \\
= & \tau\left(Q_{0}\right) \tau\left(Q_{1}\right)\left\langle 1 \otimes 1, \partial_{0} P_{1}\right\rangle_{L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau)},
\end{aligned}
$$

Proof of Lemma 3 (cont.)

Thus, for $r=1$ we have

$$
\begin{aligned}
\tau\left(\xi_{0} Q_{0} P_{1} Q_{1}\right)= & \tau\left(\xi_{0} \check{Q}_{0} P_{1} \grave{Q}_{1}\right)+\tau\left(Q_{0}\right) \tau\left(\xi_{0} P_{1} \grave{Q}_{1}\right) \\
& +\tau\left(Q_{1}\right) \tau\left(\xi_{0} \grave{Q}_{0} P_{1}\right)+\tau\left(Q_{0}\right) \tau\left(Q_{1}\right) \tau\left(\xi_{0} P_{1}\right) \\
= & \tau\left(Q_{0}\right) \tau\left(Q_{1}\right) \tau\left(\xi_{0} P_{1}\right) \\
= & \tau\left(Q_{0}\right) \tau\left(Q_{1}\right)\left\langle 1 \otimes 1, \partial_{0} P_{1}\right\rangle_{L^{2}(A, \tau) \bar{\otimes} L^{2}(A, \tau)}
\end{aligned}
$$

while on the other hand

$$
\begin{aligned}
\left\langle\xi_{1}, Q_{0} P_{1} Q_{1}\right\rangle_{2} & =\tau \otimes \tau\left(\partial_{1}\left(Q_{0} P_{1} Q_{1}\right)\right) \\
& =\tau \otimes \tau\left(Q_{0} \cdot \partial_{1}\left(P_{1}\right) \cdot Q_{1}\right) \\
& =\tau \otimes \tau\left(Q_{0} \cdot \partial_{0}\left(P_{1}\right) \cdot Q_{1}\right) \\
& =\tau\left(Q_{0}\right) \tau\left(Q_{1}\right) \tau \otimes \tau\left(\partial_{0} P_{1}\right)
\end{aligned}
$$

where the last equality follows from free independence.

Proof of Lemma 3 (cont.)

For $r \geq 2$ we have

$$
\begin{aligned}
& \tau\left(\xi_{0} Q_{0} P_{1} \ldots P_{r} Q_{r}\right) \\
& =\tau\left(\xi_{0} \stackrel{\circ}{Q}_{0} P_{1} \cdots P_{r} \stackrel{\circ}{Q}_{r}\right)+\tau\left(Q_{0}\right) \tau\left(\xi_{0} P_{1} \ldots P_{r} \stackrel{\circ}{Q}_{r}\right) \\
& \quad+\tau\left(Q_{r}\right) \tau\left(\xi_{0} \stackrel{\circ}{0}_{0} P_{1} \cdots P_{r}\right)+\tau\left(Q_{0}\right) \tau\left(Q_{r}\right) \tau\left(\xi_{0} P_{1} \ldots P_{r}\right)=0 .
\end{aligned}
$$

And

$$
\begin{aligned}
& \tau \otimes \tau\left(\partial_{1}\left(Q_{0} P_{1} \cdots P_{r} Q_{r}\right)\right) \\
& \quad=\sum_{l=1}^{r} \tau \otimes \tau\left(\left[Q_{0} P_{1} \cdots Q_{l-1}\right] \cdot \partial_{1}\left(P_{l}\right) \cdot\left[Q_{l} \cdots P_{r} Q_{r}\right]\right)=0 .
\end{aligned}
$$

Lemma 4

Let $\left\{X_{j}^{(k)}\right\} \subset(A, \tau), k=1, \ldots, p, j=1,2, \ldots$ be non-commutative random variables. Fix $N \in \mathbb{N}, j=1, \ldots, N+1$, and $k=1, \ldots, p$. Then one has

$$
\begin{aligned}
& J\left(\sum_{i=1}^{N+1} X_{i}^{(k)}:\left\{\sum_{i=1}^{N+1} X_{i}^{(r)}\right\}_{r \neq k}\right) \\
& =E_{W^{*}\left(\left\{\sum_{i=1}^{N+1} X_{i}^{(r)}\right\}_{r=1}^{p}\right)^{J}\left(\sum_{i \neq j} X_{i}^{(k)}:\left\{\sum_{i \neq j} X_{i}^{(r)}\right\}_{r \neq k},\left\{X_{j}^{(r)}\right\}_{r=1}^{p}\right)}
\end{aligned}
$$

assuming the conjugate variables on the right-hand side exists.

Lemma 4

Let $\left\{X_{j}^{(k)}\right\} \subset(A, \tau), k=1, \ldots, p, j=1,2, \ldots$ be non-commutative random variables. Fix $N \in \mathbb{N}, j=1, \ldots, N+1$, and $k=1, \ldots, p$. Then one has

$$
\begin{aligned}
& J\left(\sum_{i=1}^{N+1} X_{i}^{(k)}:\left\{\sum_{i=1}^{N+1} X_{i}^{(r)}\right\}_{r \neq k}\right) \\
& =E_{W^{*}\left(\left\{\sum_{i=1}^{N+1} X_{i}^{(r)}\right\}_{r=1}^{p}\right)^{J}\left(\sum_{i \neq j} X_{i}^{(k)}:\left\{\sum_{i \neq j} X_{i}^{(r)}\right\}_{r \neq k},\left\{X_{j}^{(r)}\right\}_{r=1}^{p}\right)}
\end{aligned}
$$

assuming the conjugate variables on the right-hand side exists.
The basic idea, is that if $y=\tilde{y}+x$ then $\partial_{y}(p(y))=\partial_{\tilde{y}}(p(\tilde{y}+x))$.

Proof.

Let $Y_{k}=\sum_{i=1}^{N+1} X_{i}^{(k)}$ and $Y_{k}^{\prime}=\sum_{i \neq j} X_{i}^{(k)}$, so that $Y_{k}=Y_{k}^{\prime}+X_{j}^{(k)}$. Then a polynomial P in Y_{1}, \ldots, Y_{p} can be viewed as a polynomial in $Y_{1}^{\prime}, \ldots, Y_{p}^{\prime}, X_{j}^{(1)}, \ldots, X_{j}^{(p)}$.

Proof.

Let $Y_{k}=\sum_{i=1}^{N+1} X_{i}^{(k)}$ and $Y_{k}^{\prime}=\sum_{i \neq j} X_{i}^{(k)}$, so that $Y_{k}=Y_{k}^{\prime}+X_{j}^{(k)}$. Then a polynomial P in Y_{1}, \ldots, Y_{p} can be viewed as a polynomial in $Y_{1}^{\prime}, \ldots, Y_{p}^{\prime}, X_{j}^{(1)}, \ldots, X_{j}^{(p)}$.
In particular,

$$
\partial_{Y_{k}^{\prime}:\left\{Y_{r}^{\prime}: r \neq k\right\},\left\{X_{j}^{(r)}: r=1, \ldots, p\right\}} P=\partial_{Y_{k}:\left\{Y_{r}: r \neq k\right\}} P,
$$

since the derivation is determined by the Leibniz rule and the values

$$
\partial_{Y_{k}^{\prime}:\left\{Y_{t}^{\prime}: r \neq k\right\},\left\{X_{j}^{(r)}: r=1, \ldots, p\right\}}\left(Y_{q}^{\prime}+X_{j}^{(q)}\right)=\partial_{Y_{k}:\left\{Y_{r}: r \neq k\right\}}\left(Y_{q}\right)=\delta_{k=q} 1 \otimes 1 .
$$

Proof of Lemma 4 (cont.)

Hence

$$
\begin{aligned}
\left\langle P, J\left(Y_{k}^{\prime}:\left\{Y_{r}^{\prime}: r\right.\right.\right. & \left.\left.\neq k\},\left\{X_{j}^{(r)}: r=1, \ldots, p\right\}\right)\right\rangle_{2} \\
& =\left\langle P, J\left(Y_{k}:\left\{Y_{r}: r \neq k\right\}\right)\right\rangle_{2},
\end{aligned}
$$

which concludes the proof as $P \in W^{*}\left(Y_{1}, \ldots, Y_{p}\right)$.

Theorem 5

Let (A, τ) be a non-commutative probability space. Let $X_{j}=\left(X_{j}^{(1)}, \ldots, X_{j}^{(p)}\right) \in A^{p}, j=1,2, \ldots$ be a sequence of p-tuples of random variables, such that X_{1}, X_{2}, \ldots are freely independent, identically distributed, and have finite second moments. Define $Z_{N}=N^{-1 / 2}\left(X_{1}+\cdots+X_{N}\right)$. Then the function $N \mapsto \Phi^{*}\left(Z_{N}^{(1)}, \ldots, Z_{N}^{(p)}\right)$ is monotone nonincreasing.

Theorem 5

Let (A, τ) be a non-commutative probability space. Let $X_{j}=\left(X_{j}^{(1)}, \ldots, X_{j}^{(p)}\right) \in A^{p}, j=1,2, \ldots$ be a sequence of p-tuples of random variables, such that X_{1}, X_{2}, \ldots are freely independent, identically distributed, and have finite second moments. Define $Z_{N}=N^{-1 / 2}\left(X_{1}+\cdots+X_{N}\right)$. Then the function $N \mapsto \Phi^{*}\left(Z_{N}^{(1)}, \ldots, Z_{N}^{(p)}\right)$ is monotone nonincreasing.

Proof.

First note that

$$
J\left(c X: b Y_{1}, \ldots, b Y_{n}\right)=c^{-1} J\left(X: Y_{1}, \ldots, Y_{n}\right)
$$

this follows from the observation $\partial_{c t}(t)=c^{-1} \partial_{c t}(c t)=c^{-1} \partial_{t}(t)$.

Proof of Theorem 5 (cont.)

Fix j and let Y_{k} and Y_{k}^{\prime} be as in the previous proof. Then $Z_{N+1}^{(r)}=(N+1)^{-1 / 2} Y_{r}$. Let $B=W^{*}\left(Z_{N+1}^{(1)}, \ldots, Z_{N+1}^{(p)}\right)$.

Proof of Theorem 5 (cont.)

Fix j and let Y_{k} and Y_{k}^{\prime} be as in the previous proof. Then
$Z_{N+1}^{(r)}=(N+1)^{-1 / 2} Y_{r}$. Let $B=W^{*}\left(Z_{N+1}^{(1)}, \ldots, Z_{N+1}^{(p)}\right)$.
Then

$$
\begin{aligned}
J\left(Z_{N+1}^{(k)}:\left\{Z_{N+1}^{(r)}: r \neq k\right\}\right) & =(N+1)^{\frac{1}{2}} J\left(Y_{k}:\left\{Y_{r}: r \neq k\right\}\right) \\
& =(N+1)^{\frac{1}{2}} E_{B} J\left(Y_{k}^{\prime}:\left\{Y_{r}^{\prime}: r \neq k\right\},\left\{X_{j}^{(r)}\right\}_{r=1}^{n}\right) \\
& =(N+1)^{\frac{1}{2}} E_{B} J\left(Y_{k}^{\prime}:\left\{Y_{r}^{\prime}: r \neq k\right\}\right),
\end{aligned}
$$

where we have used (in order) our initial observation, Lemma 4, and Lemma 3. (Recall that the $X_{j}^{(r)}$ are freely independent from the $Y_{r}^{\prime}=\sum_{i \neq j} X_{i}^{(r)}$.)

Proof of Theorem 5 (cont.)

Thus we have

$$
\begin{aligned}
(N+1)^{\frac{1}{2}} J & \left(Z_{N+1}^{(k)}:\left\{Z_{N+1}^{(r)}: r \neq k\right\}\right) \\
& =E_{B}(N+1) J\left(\sum_{i \neq j} X_{i}^{(k)}:\left\{\sum_{i \neq j} X_{i}^{(r)}\right\}_{r \neq k}\right) \\
& =E_{B} \sum_{j=1}^{N+1} J\left(\sum_{i \neq j} X_{i}^{(k)}:\left\{\sum_{i \neq j} X_{i}^{(r)}\right\}_{r \neq k}\right)
\end{aligned}
$$

where we have used the fact that our initial choice of j was arbitrary.

Proof of Theorem 5 (cont.)

Since E_{B} is a contraction on $L^{2}(A, \tau)$ we then have

$$
\begin{equation*}
\left\|J\left(Z_{N+1}^{(k)}:\left\{Z_{N+1}^{(r)}: r \neq k\right\}\right)\right\|_{2}^{2} \leq(N+1)^{-1}\left\|\sum_{j=1}^{N+1} \zeta_{j}\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

where

$$
\zeta_{j}=J\left(\sum_{i \neq j} X_{i}^{(k)}:\left\{\sum_{i \neq j} X_{i}^{(r)}\right\}_{r \neq k}\right)
$$

To proceed, we need to appeal to a lemma from the classical proof:

To proceed, we need to appeal to a lemma from the classical proof:

Lemma 6 ([1])

Let E_{1}, \ldots, E_{N+1} be commuting orthogonal projections in a Hilbert space. Assume that we have $N+1$ vectors $\zeta_{1}, \ldots, \zeta_{N+1}$ such that for every j, $E_{1} \cdots E_{N+1} \zeta_{j}=0$. Then

$$
\left\|\sum_{j=1}^{N+1} E_{j} \zeta_{j}\right\|^{2} \leq N \sum_{j=1}^{N+1}\left\|\zeta_{j}\right\|^{2} .
$$

To proceed, we need to appeal to a lemma from the classical proof:

Lemma 6 ([1])

Let E_{1}, \ldots, E_{N+1} be commuting orthogonal projections in a Hilbert space. Assume that we have $N+1$ vectors $\zeta_{1}, \ldots, \zeta_{N+1}$ such that for every j, $E_{1} \cdots E_{N+1} \zeta_{j}=0$. Then

$$
\left\|\sum_{j=1}^{N+1} E_{j} \zeta_{j}\right\|^{2} \leq N \sum_{j=1}^{N+1}\left\|\zeta_{j}\right\|^{2}
$$

Proof of Theorem 5 (cont.)

We let $M_{j}=W^{*}\left(X_{j}\right), M=W^{*}\left(X_{1}, \ldots, X_{N+1}\right), Q_{j}=W^{*}\left(X_{i}: i \neq j\right)$, and $E_{j}=E_{Q_{j}}$.

To proceed, we need to appeal to a lemma from the classical proof:

Lemma 6 ([1])

Let E_{1}, \ldots, E_{N+1} be commuting orthogonal projections in a Hilbert space. Assume that we have $N+1$ vectors $\zeta_{1}, \ldots, \zeta_{N+1}$ such that for every j, $E_{1} \cdots E_{N+1} \zeta_{j}=0$. Then

$$
\left\|\sum_{j=1}^{N+1} E_{j} \zeta_{j}\right\|^{2} \leq N \sum_{j=1}^{N+1}\left\|\zeta_{j}\right\|^{2}
$$

Proof of Theorem 5 (cont.)

We let $M_{j}=W^{*}\left(X_{j}\right), M=W^{*}\left(X_{1}, \ldots, X_{N+1}\right), Q_{j}=W^{*}\left(X_{i}: i \neq j\right)$, and $E_{j}=E_{Q_{j}}$.
We claim the E_{j} commute, $E_{j} \zeta_{j}=\zeta_{j}$, and $E_{1} \cdots E_{N+1} \zeta_{j}=\tau\left(\zeta_{j}\right)=0$.

Proof of Theorem 5 (cont.)

That $E_{j} \zeta_{j}=\zeta_{j}$ follows from the definition of ζ_{j}, and $\tau\left(\zeta_{j}\right)=\left\langle 1, \zeta_{j}\right\rangle_{2}=\left\langle\partial_{j}(1), 1 \otimes 1\right\rangle=0$.

Proof of Theorem 5 (cont.)

That $E_{j} \zeta_{j}=\zeta_{j}$ follows from the definition of ζ_{j}, and $\tau\left(\zeta_{j}\right)=\left\langle 1, \zeta_{j}\right\rangle_{2}=\left\langle\partial_{j}(1), 1 \otimes 1\right\rangle=0$.
Let $\stackrel{\circ}{M}_{j}=M_{j} \ominus \mathbb{C} 1$ (i.e. the centered elements in M_{j}). Then M has the following orthogonal decomposition:

$$
L^{2}(M, \tau)=\mathbb{C} 1 \oplus \bigoplus_{n=1}^{\infty}\left[\bigoplus_{j_{1} \neq \cdots \neq j_{n}} \check{M}_{j_{1}} \check{M}_{j_{2}} \cdots \check{M}_{j_{n}}\right] .
$$

It is orthogonal precisely because of the free independence.

Proof of Theorem 5 (cont.)

That $E_{j} \zeta_{j}=\zeta_{j}$ follows from the definition of ζ_{j}, and $\tau\left(\zeta_{j}\right)=\left\langle 1, \zeta_{j}\right\rangle_{2}=\left\langle\partial_{j}(1), 1 \otimes 1\right\rangle=0$.
Let $\stackrel{\circ}{M}_{j}=M_{j} \ominus \mathbb{C} 1$ (i.e. the centered elements in M_{j}). Then M has the following orthogonal decomposition:

$$
L^{2}(M, \tau)=\mathbb{C} 1 \oplus \bigoplus_{n=1}^{\infty}\left[\bigoplus_{j_{1} \neq \cdots \neq j_{n}} \check{M}_{j_{1}} \check{M}_{j_{2}} \cdots \check{M}_{j_{n}}\right] .
$$

It is orthogonal precisely because of the free independence.
Q_{j} has the same decomposition except that j_{k} is never allowed to be j, and E_{j} is determined by $E_{j} 1=1$ and

$$
\left.E_{j}\right|_{\dot{M}_{j_{1}} \dot{M}_{j_{2}} \cdots \dot{M}_{j_{n}}}=\left\{\begin{array}{ll}
\text { id } & \text { if } j \notin\left\{j_{1}, \ldots, j_{n}\right\} \\
0 & \text { otherwise }
\end{array} .\right.
$$

Proof of Theorem 5 (cont.)

From this characterization is clear that the E_{j} commute with one another and

$$
\left.E_{j} E_{i}\right|_{\dot{M}_{j_{1}} \dot{M}_{j_{2}} \cdots \dot{M}_{j_{n}}}=\left\{\begin{array}{cl}
\text { id } & \text { if }\{i, j\} \cap\left\{j_{1}, \ldots, j_{n}\right\}=\emptyset \\
0 & \text { otherwise }
\end{array} .\right.
$$

Proof of Theorem 5 (cont.)

From this characterization is clear that the E_{j} commute with one another and

$$
\left.E_{j} E_{i}\right|_{\dot{M}_{j_{1}} \dot{M}_{j_{2}} \cdots \dot{M}_{j_{n}}}=\left\{\begin{array}{cl}
\text { id } & \text { if }\{i, j\} \cap\left\{j_{1}, \ldots, j_{n}\right\}=\emptyset \\
0 & \text { otherwise }
\end{array} .\right.
$$

Moreover, $E_{1} \cdots E_{N+1}$ is the orthogonal projection onto the scalars $\mathbb{C} 1$. Hence we can determine $E_{1} \cdots E_{N+1} \zeta_{j}$ by considering the inner products of the ζ_{j} against scalars:

$$
\left\langle 1, \zeta_{j}\right\rangle_{2}=\tau\left(\zeta_{j}\right),
$$

so $E_{1} \cdots E_{N+1} \zeta_{j}=\tau\left(\zeta_{j}\right) 1$, as claimed.

Proof of Theorem 5 (cont.)

Applying Lemma 6 to (1) yields

$$
\left\|J\left(Z_{N+1}^{(k)}:\left\{Z_{N+1}^{(r)}: r \neq k\right\}\right)\right\|_{2}^{2} \leq(N+1)^{-1} N \sum_{j=1}^{N+1}\left\|\zeta_{j}\right\|_{2}^{2} .
$$

Proof of Theorem 5 (cont.)

Applying Lemma 6 to (1) yields

$$
\left\|J\left(Z_{N+1}^{(k)}:\left\{Z_{N+1}^{(r)}: r \neq k\right\}\right)\right\|_{2}^{2} \leq(N+1)^{-1} N \sum_{j=1}^{N+1}\left\|\zeta_{j}\right\|_{2}^{2} .
$$

However, since the p-tuples are identically distributed we have

$$
\begin{aligned}
\sum_{j=1}^{N+1}\left\|\zeta_{j}\right\|_{2}^{2} & =(N+1)\left\|\zeta_{N+1}\right\|_{2}^{2} \\
& =(N+1)\left\|J\left(\sum_{i=1}^{N} X_{i}^{(k)}:\left\{\sum_{i=1}^{N} X_{i}^{(r)}: r \neq k\right\}\right)\right\|_{2}^{2} \\
& =\frac{N+1}{N} \| J\left(Z_{N}^{(k)}:\left\{Z_{N}^{(r)}: r \neq k\right\} \|_{2}^{2}\right.
\end{aligned}
$$

Proof of Theorem 5 (cont.)

Combining the two previous equations then yields

$$
\left\|J\left(Z_{N+1}^{(k)}:\left\{Z_{N+1}^{(r)}: r \neq k\right\}\right)\right\|_{2}^{2} \leq \| J\left(Z_{N}^{(k)}:\left\{Z_{N}^{(r)}: r \neq k\right\} \|_{2}^{2}\right.
$$

Proof of Theorem 5 (cont.)

Combining the two previous equations then yields

$$
\left\|J\left(Z_{N+1}^{(k)}:\left\{Z_{N+1}^{(r)}: r \neq k\right\}\right)\right\|_{2}^{2} \leq \| J\left(Z_{N}^{(k)}:\left\{Z_{N}^{(r)}: r \neq k\right\} \|_{2}^{2}\right.
$$

Finally, summing over k yields

$$
\Phi^{*}\left(Z_{N+1}^{(1)}, \ldots, Z_{N+1}^{(p)}\right) \leq \Phi^{*}\left(Z_{N}^{(1)}, \ldots, Z_{N}^{(p)}\right)
$$

Proof of Theorem 2.

We wish to show

$$
\chi^{*}\left(Z_{N}^{(1)}, \ldots, Z_{N}^{(p)}\right) \leq \chi^{*}\left(Z_{N+1}^{(1)}, \ldots, Z_{N+1}^{(p)}\right)
$$

Proof of Theorem 2.

We wish to show

$$
\chi^{*}\left(Z_{N}^{(1)}, \ldots, Z_{N}^{(p)}\right) \leq \chi^{*}\left(Z_{N+1}^{(1)}, \ldots, Z_{N+1}^{(p)}\right)
$$

where for an arbitrary p-tuple $\left(W^{(1)}, \ldots, W^{(p)}\right)$

$$
\begin{aligned}
& \chi^{*}\left(W^{(1)}, \ldots, W^{(p)}\right) \\
& \quad=\frac{1}{2} \int_{0}^{\infty}\left[\frac{p}{1+t}-\Phi^{*}\left(W^{(1, t)}, \ldots, W^{(p, t)}\right)\right] d t+\frac{p}{2} \log 2 \pi e
\end{aligned}
$$

Proof of Theorem 2.

We wish to show

$$
\chi^{*}\left(Z_{N}^{(1)}, \ldots, Z_{N}^{(p)}\right) \leq \chi^{*}\left(Z_{N+1}^{(1)}, \ldots, Z_{N+1}^{(p)}\right)
$$

where for an arbitrary p-tuple $\left(W^{(1)}, \ldots, W^{(p)}\right)$

$$
\begin{aligned}
& \chi^{*}\left(W^{(1)}, \ldots, W^{(p)}\right) \\
& \quad=\frac{1}{2} \int_{0}^{\infty}\left[\frac{p}{1+t}-\Phi^{*}\left(W^{(1, t)}, \ldots, W^{(p, t)}\right)\right] d t+\frac{p}{2} \log 2 \pi e
\end{aligned}
$$

where $W^{(k, t)}=W^{(k)}+\sqrt{t} S^{(k)}$ with $S^{(1)}, \ldots, S^{(p)}$ a freely iid centered semicircular random variables of variance 1 , freely independent from $W^{(1)}, \ldots, W^{(p)}$.

Proof of Theorem 2 (cont.)

Let $\left\{S_{j}^{(k)}: j=1, \ldots, N+1, k=1, \ldots, p\right\}$ be freely iid centered semicircular variables of variance 1 , which are freely independent from $\left\{X_{j}^{(k)}\right\}_{j, k}$.

Proof of Theorem 2 (cont.)

Let $\left\{S_{j}^{(k)}: j=1, \ldots, N+1, k=1, \ldots, p\right\}$ be freely iid centered semicircular variables of variance 1 , which are freely independent from $\left\{X_{j}^{(k)}\right\}_{j, k}$.
Define $X_{j}^{(k, t)}=X_{j}^{(k)}+\sqrt{t} S_{j}^{(k)}$ and $Z_{N}^{(k, t)}=N^{-1 / 2}\left(X_{1}^{(k, t)}+\cdots+X_{N}^{(k, t)}\right)$.

Proof of Theorem 2 (cont.)

Let $\left\{S_{j}^{(k)}: j=1, \ldots, N+1, k=1, \ldots, p\right\}$ be freely iid centered semicircular variables of variance 1 , which are freely independent from $\left\{X_{j}^{(k)}\right\}_{j, k}$.
Define $X_{j}^{(k, t)}=X_{j}^{(k)}+\sqrt{t} S_{j}^{(k)}$ and $Z_{N}^{(k, t)}=N^{-1 / 2}\left(X_{1}^{(k, t)}+\cdots+X_{N}^{(k, t)}\right)$.
The p-tuples $X_{j}^{t}=\left(X_{j}^{(1, t)}, \ldots, X_{j}^{(p, t)}\right)$ are freely iid with finite second moments (via the Cauchy-Schwarz inequality).

Proof of Theorem 2 (cont.)

Let $\left\{S_{j}^{(k)}: j=1, \ldots, N+1, k=1, \ldots, p\right\}$ be freely iid centered semicircular variables of variance 1 , which are freely independent from $\left\{X_{j}^{(k)}\right\}_{j, k}$.
Define $X_{j}^{(k, t)}=X_{j}^{(k)}+\sqrt{t} S_{j}^{(k)}$ and $Z_{N}^{(k, t)}=N^{-1 / 2}\left(X_{1}^{(k, t)}+\cdots+X_{N}^{(k, t)}\right)$.
The p-tuples $X_{j}^{t}=\left(X_{j}^{(1, t)}, \ldots, X_{j}^{(p, t)}\right)$ are freely iid with finite second moments (via the Cauchy-Schwarz inequality).
Hence we may apply Theorem 5 to obtain

$$
\Phi^{*}\left(Z_{N}^{(1, t)}, \ldots, Z_{N}^{(p, t)}\right) \geq \Phi^{*}\left(Z_{N+1}^{(1, t)}, \ldots, Z_{N+1}^{(p, t)}\right)
$$

Proof of Theorem 2 (cont.)

Note that $Z_{N}^{(k, t)}=Z_{N}^{(k)}+\sqrt{t} S^{(N, k)}$ where for each fixed N, $S^{(N, k)}=N^{-1 / 2}\left(S_{1}^{(k)}+\cdots+S_{N}^{(k)}\right), k=1, \ldots, p$ is a family of centered freely iid semicircular variables freely independent from $\left\{Z_{N}^{(k)}\right\}_{k=1}^{p}$ and having variance 1.

Proof of Theorem 2 (cont.)

Note that $Z_{N}^{(k, t)}=Z_{N}^{(k)}+\sqrt{t} S^{(N, k)}$ where for each fixed N, $S^{(N, k)}=N^{-1 / 2}\left(S_{1}^{(k)}+\cdots+S_{N}^{(k)}\right), k=1, \ldots, p$ is a family of centered freely iid semicircular variables freely independent from $\left\{Z_{N}^{(k)}\right\}_{k=1}^{p}$ and having variance 1.
The definition of χ^{*} and the free Fisher information inequality gives

$$
\begin{aligned}
\chi^{*} & \left(Z_{N}^{(1)}, \ldots, Z_{N}^{(p)}\right) \\
& =\frac{1}{2} \int_{0}^{\infty}\left[\frac{p}{1+t}-\Phi^{*}\left(Z_{N}^{(1, t)}, \ldots, Z_{N}^{(p, t)}\right)\right] d t+\frac{p}{2} \log 2 \pi e \\
& \leq\left[\frac{p}{1+t}-\Phi^{*}\left(Z_{N+1}^{(1, t)}, \ldots, Z_{N+1}^{(p, t)}\right)\right] d t+\frac{p}{2} \log 2 \pi e \\
& =\chi^{*}\left(Z_{N+1}^{(1)}, \ldots, Z_{N+1}^{(p)}\right)
\end{aligned}
$$

R Artstein，S．，Ball，K．，Barthe，F．，and Naor，A．，Solution of Shannon＇s Problem on the monotonicity of entropy．Journal Amer．Math．Soc． 17 （2004），975－982；
國 Shlyakhtenko，D．，A free analogue of Shannon＇s problem on monotonicity of entropy．Adv．Math． 208 （2007），no．2，824－833；
Shlyakhtenko，D．，Notes on free probability theory．Preprint， arXiv．org：0504063v1，2005；
Shlyakhtenko，D．and Schultz，H．，Shannon＇s monotonicity problem for free and classical entropy．Proc．Nat．Acad．Sci． 104 No． 39 15254－15258（2007）；
回 Voiculescu，D．，The analogues of entropy and of Fisher＇s information measure in free probability，V．Invent．Math． 132 （1998），189－227．
固 Voiculescue，D．，Symmetries of some reduced free product C^{*}－algebras， Operator Algebras and Their Connections with Topology and Ergodic Theory， Lecture Notes in Mathematics，vol．1132，Springer Verlag，1985，pp．556－588．

